Tuesday, December 18, 2012

幸福的定义

問:幸福的定义为什么?
答:现在的小孩有很多数码用品,所以他们幸福。

在你说出这句话的时候,你间接带出了一个矛盾的讯息。以前的小孩都没有手机及3C 产品,难道说他们不幸福吗?



世界快要末日了

世界快要末日了,所以啊。。
我就算死,也要死在整齊的房間了。

我也懶太久了,房間是有夠亂的~
好吧,既然世界都快要末日了,那我給自己設定目標。。
那就是----整理房間,吃飽飯等死,不要死了做餓鬼嘛 =P

好啦,如果不是末日,那就好好繼續過好我的生活。
總覺得自己的抗壓能力漸漸地下滑,是不是我們都變草莓族了呢?
因人而異吧,還有種種的因素啊!
記得上回工作時,上司很愛說,你們這些90後,90後。。
不懂好笑還氣人?我是80後!!不過你要當我90後,你喜歡。
至少你默認了我看起來年輕,謝咯~

好了,嚴重離題。。
下回再接~

Thursday, December 06, 2012

心中的遺憾

心有余而力不足的,無奈+傷心!
唉。。
該如何走下一步啊?

Tuesday, November 20, 2012

假期(四)

早上處於一個超不爽的狀態,討厭!
但喜歡Coffee house 的吐司,yummy~~
可是哦,它的pastry一般而已。。

下午吃過了penang road的cendol。
幾討厭一下,進旁邊的茶室吃,沒點東西者=RM0.40
若拿著cendol進去吃,要charge你RM0.50
神經病!!那碗cendol才RM2.00,你不如去打搶更快!

上極樂寺,點了個燈~
天空不作美,竟然下起雨來。。殘念。。
之後,去gurney mall走走 + 吃 BBQ Plaza~

最後,看我的狗蚪蚪,我想起我阿白。
忍不住眼淚,一直流。。
我還記得我們之間的約定,我們會見面的。

我覺得有時候,溝通並不難,要踏出自己心中的第一步才難。
謝謝朋友的坦白與直爽,還有關心。
不像一些人,唯恐天下不亂,惺惺作態,真令人討厭!
俗語說“不知者無罪”,但一些知者還一起扮傻起哄。
有時候做人壞一點,自私一點,對自己好一點是對的~

不說了,睡覺。

Monday, November 19, 2012

假期(三)

人都是自私的,都只顧自己或眼前的事物而已。。
他人呢?自然而然有別人去顧的啦。。
俗語說的好“個人自掃門前雪”
我不喜歡自私的人,甚至可是說對這類人超級反感!
討厭!

今天過得超級不爽就對了。
到底什麼叫做朋友,什麼叫做友誼?
看來得好好的重新評估一番。
所謂“己所不欲,勿施於人”。

對,我就是這樣子的一個人。
喜歡,我跟你說!
不喜歡,sorry我不會偽裝自己,沒必要。
你喜不喜歡是你的事,我就是我,不必依你的吩咐做事。
請問,你是我的誰?!去!

好了,今天唯一欣慰的是去吃福建面及喝荳蔻冰。
要睡覺了,晚安啊!
明天會更好!!

Sunday, November 18, 2012

假期(二)

今天古城的雞飯粒,超好吃!
Jonker88的娘惹,超好吃!
晚上CAPITOL的satay celup,我覺得普普通通~還是喜歡別一間的。。
凌晨的小酌,很棒一下!

基本上今天就是一直吃,一直吃,一直吃!!


Saturday, November 17, 2012

假期(一)

難得有個假期,可以讓自己好好瘋狂一下。
很多時候,不用想那麼多~
你如果想笑就笑,想哭就哭,每個人有自己的一套,適合我的未必適合他~
但有時候靜下來時,該解決的事還在那兒等著你呢。

我喜歡。。
昨天的snow world及卡拉OK
今天在牛仔城的4D戲院及嘉年華會

累了,就睡覺~
晚安!

Thursday, October 04, 2012

我的錯

我很野蠻,
我很無理,
我很霸道,
都是我!

我很有問題,
你們沒錯,
你們對完,
你們最好!

教我怎樣做吧

Friday, September 21, 2012

最近。。。

很多時候我還蠻想寫部落格的,
可是當坐在電腦前時,
頭腦卻一片空白。

最近做了一個重要的決定,
我為自己做出的抉擇感到開心!
我才不會逼自己做我不喜歡的事,
人生短短幾十年,
我不要老來才後悔這個那個的~

最近停下忙碌的腳步,
才發現原來已很久沒跟四周的朋友聯繫~
努力工作固然重要,但因此而失去朋友也未免太可惜了。
感謝最近陪伴我走過傷心日子的朋友,
愛你們哦!
感謝一路有你們的陪伴與鼓勵,
讓我有勇氣去追夢~

最近我找回了失去已久的熱誠,
若不是某些人事物,我想還是漫無目的地神遊。
以為自己找到了目標,
原來並不是的,沒那麼快,也沒那麼簡單啦~

最近送朋友去機場,
讓我很想很想很去乘坐飛機!
氣死我了!對,我就是很愛飛機~
如果每個月都可以搭飛機去新的地方走走,那該有多好啊!
沒法啦,誰叫我爸不是馬航的CEO (-_-)'''
想坐飛機想到快瘋掉!
哈哈哈~~

最近新收的學生,
都很乖,很好學,讓我感到很欣慰~
希望這兩個月的時間他們真的要好好加油!
你們是可以拿A的。
世上無難事,只怕有心人嘛~

好了,
下次再寫,大家。。
加油加油加油!!!!!!!=)

Wednesday, September 12, 2012

請對號入座吧!



世界上就是有那麼卑鄙的小人,帶著面具過日子。
當你面前說你好話,但卻在背後不斷說你的是非。
不錯嘛~
好一個長舌婦,見人說人話,見鬼說鬼話。
今年的金馬獎非你莫屬了,恭喜!



最近領悟了一件事:
在你不斷向別要求的時候,是否想過自身可以付出些什麼以換來你要的呢?
又要馬兒跑,又要馬兒不吃草。
作為管理者,擁有這樣的思想,只能說他是庸才。



若你自己不懂得尊敬他人,那你憑什麼要別人尊敬你?
就因為你是權高位重的前輩嗎?
在你情商走低的時候,你可以不尊重別人,但要求別人尊重你?
瞎!


Sunday, September 02, 2012

內心對白?

終於放下心中的一顆大石頭了~
不過,還是很煩啊!!

我要繼續加油,打敗壞人!
必定要取得最後的勝利~

傑夫,加油加油加油!!!!

Friday, August 31, 2012

Strictly Viennese Waltz



So beautiful isn't? The music, the dance, the singer..
The genre of this song is Waltz, love it so much...

Wednesday, August 22, 2012

我的LEGO®故事



曾幾何時,玩具在我生命中扮演著多麼重要的角色。
它就等同於爸爸媽媽對我的愛。
LEGO,我的玩具之一~

爸爸,媽媽我愛你們!
希望在你們年老的時候,我會有能力讓你們過好日子。
開開心,就像在我跟妹妹小時候,那麼疼愛我們。
帶你們出去玩,去坐船,坐飛機去看雪。。

相信我,不會讓你們等太久的。
我會努力!


Wednesday, August 01, 2012

豪無歉意的人

我累了。。
你,愛怎樣就怎樣。。
在這事件上一直不斷重複的爭吵,我真的感到無力。。

我不斷地在防他,而你卻不斷製造機會去接觸他。。
好吧,你那麼喜歡關心他是嗎?那就隨你吧。。
這世上沒有說因為失去某人而活不下去。。

謹記這一點,一切是你自找的。。
我不會再給你任何機會了。。
下一次?不會再有下一次,再見!

Tuesday, June 26, 2012

六月就要過完了!


“ 我不喜歡夾在一對情侶中間當磨心,幹嘛牽涉我啊?!
你們要怎樣吵,那是你們家的事,超討厭這種幼稚的人~
有話就說,有屁就放!婆婆媽媽,到底有沒有種啊!白痴。。”
——以上應該是許多人的心聲吧~


其實你們知不知道,我並不是超人,無敵鐵金剛或強大無比的巨人。
我只不過是名無名小卒,平明百姓。
所以啊,可不可以不要來侵犯我的私人領域啊?
我想說或不想說的,都輪不到你們來決定。
如果你要來硬的,沒用的!因為我的脾氣可以比你硬幾百倍,幾千倍甚至幾萬倍!
那些喜歡撲火的飛蛾們,或愛撞石頭的雞蛋們,你們自便吧~
可別說我沒給你們事先警告 =) 


每當放棄的念頭萌起时,我总会想起她——谢安真。
在台灣偶像劇犀利人妻裡頭,安真總是樂觀地看待一切。
就算身心靈有多麼的累,她還是勇敢的面對它們~
最喜歡她那句,“謝安真,不要怕!”
我也要對自己說一聲:“傑夫,不要怕!”
=)
  

Tuesday, June 05, 2012

我的-- 家

最近在填写表格时,恍然发现妈快要50岁了,爸已过了60大关。而我呢,竟然已经24,妹也过21。


已经十四年没见了,他变什么样子了?走在街头,我们还认得彼此吗?不晓得。


以前的我们,打打闹闹过日子。现在呢?一切都变了,长大不好玩。看清生活的一切,包括丑陋的那一面。我不再居住在家里了,偶尔回到去这即熟悉又陌生的地方,真让我感到感伤。我忘不了那件事。


家,已经变得很陌生了。虽然我心一直不断说服自己没改变,但现实终是残酷的。四年的时间,一切都变了。我们回不去了,已经都改变了。


我现在一切都得要靠自己。


既然已回不去从前,那只能为未来打拼了。我相信我的未来已在不远处,再给我那么一点点时间,有一天我会是你们骄傲,不再是污点。


爱你们的儿子


Published with Blogger-droid v2.0.4

Monday, May 28, 2012

我讨厌生日!!!

我尽量让自己以平常心看待,但我真的办不到!
我感到超级失望,没有家人记得今天是我生日,连一封简讯也没有。
HELLO,你们真的是我的家人吗????
我已经忍很多年了,每次我生日你们当我透明,到你们生日就大搞特稿!
我以后不会去理你们的生日了!!别叫我回家帮你们庆祝,我睬你们都傻!

再来,真正跟我说生日快乐的人,就只有6个人~ 超可悲的,不是吗?
好了,再来我一而再,再而三的跟某人说,你不出来陪我去旺角喝奶茶,没关系。
她竟然一直打来问我是不是生气,烦不烦啊!!
之后,竟然还一个人晚上走路来我家送我蛋糕,神经病!
我就快被气死,我没有在家你走过来干什么?!
对不起,你这一套我完完全全不受,而且我还觉得你没用脑袋来做事情。
你觉得你很伟大或很让人感动?
我不觉得,还觉得你这样子做不但危害自己的安全,还不顾他人感受!
到最后,我是没有感动,反而感到很讨厌!
都不懂为什么会有这一号人物的存在!~

终结:
我以后都不过生日,我讨厌我生日!还有,你们生日干我屁事啊?!我生日你送我什么?简讯都没有一个啦~不要叫我送你东西或请吃,死开!

一个喜爱铁达尼号的朋友

当我收到你发的简讯是,我真的感到很意外~
因为我没想到你会给我发生日的简讯,而且还是在几天前。。
你是我其中一个特别的朋友,我想你也是那么认为的~

说真的,我很开心收到你的讯息,但我心在纠结~ 
我在纠结着应该回你或不,因为我们的关系已经闹僵了。。
我不想让你对我有所期盼后,再次不经意地伤害你的心~

最后我选择不回复你,我想也许现在还不是时候去面对着事情~
如果有缘分的话,我们迟些或许会因之前约定好的情况下见面。
希望这段时间,你会自我进步,期望下次见到崭新的你!

Thursday, March 29, 2012

夢一場

我夢見我們一家人一起吃飯,爸爸媽媽妹妹及我。

在夢中,我一直不斷地懷疑這是真的嗎?

醒過來後,才發現只不過是夢一場。

對於許多人來說,一家人吃飯是多麼普通的事情。

但,你知道嗎?它對我而言是多麼奢侈的一件事!

朋友們,若父母還在世的,請好好珍惜跟他們相處的時間。

因為你們真的很幸運,真的!

我不再氣了,真的~

爸,咪,妹,我永遠愛你們 :'(


Published with Blogger-droid v2.0.4

不完美

現實與想像的,永遠都會會有出入的。

世上沒有十全十美的東西,但執著的我卻是個完美主義者。

追求完美,就有如…


Published with Blogger-droid v2.0.4

Wednesday, March 21, 2012

驚喜

看見我學生的成績,間接反應了我的教學模式是行得通~ =)
身為教育者,最大的欣慰就是學生突破,獲得優異的成績~
這也成為了我繼續教學的動力,為了下一代,我不後悔自己當初的抉擇!
再辛苦,我也會盡我所能教好我的學生~~

Monday, March 19, 2012

改變

現在是早上六點鐘!可我現在才開始有睡意,天啊!幹嘛這樣來折磨我啊??

今天我得做個很重要的決定,考慮了很久,我還是覺得它不適合我~
與其那麼痛苦,長痛不如短痛,我決定遞上辭呈~~
也許他人會覺得我傻,或者有別的看法,可我不在乎他人看法~
只有我自己才知道它到底適不適合我,所以最後決定權當然由我來做主啦~~

往好的方面看吧,也許這樣我才能專注做好我要完成的事務~
我決定了換另外一個角度來看我的人生,我知道我的未來不是夢~
我會找到屬於我的那一片天空的!
祝福我吧!


Wednesday, February 22, 2012

What is Maths?

Readers,

You should spend some time to watch this video, cheer! =)


History of Complex Numbers a.k.a istory of Imaginary Numbers(i)

            
           i is as amazing number.  It is the only imaginary number.  However, when you square it, it becomes real.  Of course, it wasn’t instantly created. It took several centuries to convince certain mathematicians to accept this new number. Eventually, though, a section of numbers called “imaginary” was created (which also includes complex numbers, which are numbers that have both a real and imaginary part), and people now used in everyday math.

            was created due to the fact that people simply needed it.  At first, solving problems such as “-39” and “x2+1=0” were thought to be impossible.  However, mathematicians soon came up with the idea that such a number to solve these equations could be created.  Today, the number is√-1, more commonly known as i.  It’s a good thing that scientists, mathematicians who didn’t want a new numbers created, and other non-believers finally allowed (and complex numbers) in the number system.  Today, is very useful to the world. Engineers use it to study stresses on beams and to study resonance.  Complex numbers help us study the flow of fluid around objects, such as water around a pipe.  They are used in electric circuits, and help in transmitting radio waves.  So, if it weren’t fori, we might not be able to talk on cell phones, or listen to the radio!  Imaginary numbers also help in studying infinite series.  Lastly, every polynomial equation has a solution if complex numbers are used. Clearly, it is good that was created.

            The very first mention of people trying to use imaginary numbers dates all the way back to the 1stcentury.  In 50 A.D., Heron of Alexandria studied the volume of an impossible section of a pyramid. What made it impossible was when he had to take√81-114.  However, he deemed this impossible, and soon gave up.  For a very long time, no one tried to manipulate imaginary numbers.  Although, it wasn’t for a lack of trying.  Once negative numbers were “invented”, mathematicians tried to find a number that, when squared, could equal a negative one.  Not finding an answer, they gave up.  In the 1500’s, some speculation about square roots of negative numbers was brought back.  Formulas for solving 3rd and 4th degree polynomial equations were discovered, and people realized that some work with square roots of negative numbers would occasionally be required.  Naturally, they didn’t want to work with that, so they usually didn’t.  Finally, in 1545, the first major work with imaginary numbers occurred.

            In 1545, Girolamo Cardano wrote a book titled Ars Magna.  He solved the equation
x(10-x)=40, finding the answer to be 5 plus or minus√-15.  Although he found that this was the answer, he greatly disliked imaginary numbers.  He said that work with them would be, “as subtle as it would be useless”, and referred to working with them as “mental torture.”  For a while, most people agreed with him.  Later, in 1637, Rene Descartes came up with the standard form for complex numbers, which is a+bi.  However, he didn’t like complex numbers either.  He assumed that if they were involved, you couldn’t solve the problem.  Lastly, he came up with the term “imaginary”, although he meant it to be negative.  Issac Newton agreed with Descartes, and Albert Girad even went as far as to call these, “solutions impossible”.  Although these people didn’t enjoy the thought of imaginary numbers, they couldn’t stop other mathematicians from believing that might exist.

            Rafael Bombelli was a firm believer in complex numbers.  He helped introduce them, but since he didn’t really know what to do with them, he mostly wasn’t believed.  He did understand that itimes should equal -1, and that –times should equal one.  Most people did not believe this fact either.  Lastly, he did have what people called a “wild idea”- the idea that you could use imaginary numbers to get the real answers.  Today, this is known as conjugation.  Although Bombelli himself did not have much of an impact at the time, he helped lead the way for imaginary numbers.

Over decades, many people believed that complex numbers existed, and set out to make them understood and accepted.  One of the ways they wanted to make them accepted was to be able to plot them of a graph.  In this case, the X-axis is would be real numbers, and the Y-axis would be imaginary numbers.  If the number were purely imaginary (like 2i), it would just be on the Y-axis.  If the number was purely real, it would just be on the X-axis.  The first person who considered this kind of graph was John Wallis.  In 1685, he said that a complex number was just a point on a plane, but he was ignored.  More than a century later, Caspar Wessel published a paper showing how to represent complex numbers in a plane, but was also ignored. In 1777, Euler made the symbol stand for -1, which made it a little easier to understand.  In 1804, Abbe Buee thought about John Wallis’s idea about graphing imaginary numbers, and agreed with him.  In 1806, Jean Robert Argand wrote how to plot them in a plane, and today the plane is called the Argand diagram.  In 1831, Carl Friedrich Gauss made Argand’s idea popular, and introduced it to many people.  In addition, Gauss took Descartes’ a+binotation, and called this a complex number.  It took all these people working together to get the world, for the most part, to accept complex numbers.

Mathematicians kept working to make sure that imaginary and complex numbers were understood.  In 1833, William Rowan Hamilton expressed complex numbers as pairs of real numbers (such as 4+3i being expresses as (4,3)), making them less confusing and even more believable.  After this, many people, such as Karl Weierstrass, Hermann Schwarz, Richard Dedekind, Otto Holder, Henri Poincare, Eduard Study, and Sir Frank Macfarlane Burnet all studied the general theory of complex numbers.  Augustin Louis Cauchy and Niels Henrik Able made a general theory about complex numbers accepted.  August Mobius made many notes about how to apply complex numbers in geometry.  All of these mathematicians helped the world better understand complex numbers, and how they are useful.

Clearly, complex numbers are amazing. They have many uses, more than we realize.  They have a fascinating history, full of some mathematicians not believing in them and others desperately trying to prove their existence.  i is also fascinating, being the only imaginary number.  Many mathematicians brought together as much proof as they could that imaginary numbers should exist, and we have them to thank today that we can use iwhenever we please, without being questioned about it.

A very good writing on the history of complex number!! Well done to the person who gathered all the pieces and come out with this writing, brilliant! 

Wednesday, February 08, 2012

亂寫

事實是殘酷的,這是人類改變不了的事~ 我不後悔認識你,因為你我看清很多東西~ 我明白了許多,甚至可以接受及體諒一些事情~ 原來是那麼的苦,那麼的無奈,那麼的難~ 那麼的。。。

心中的仇與恨,放下了嗎?不完全,但已經放下很多~ 原來,自己之前的堅持不完全是對的~ 對於錯真的那麼重要嗎?現在的我會說,平安開心較為重要~ 以前的事情,不再重要了~已經過去了,開心或不開心的已經成了我人生的一部分~ 

人之所以會煩,是因為他在意那人事物,不然的話會有那麼煩嗎?我不知道你是抱著什麼心態來打訊息的,但老實說我不喜歡這種感覺~ 所以我選擇面對你,也趁此機會說個明白,好讓大家有個明白,不必在猜疑~ 這樣我想是最好的了~

學業上的事,就很多人喜歡過問~ 幾時畢業啊?總平均拿幾分啊?要繼續念下去哦?我不愛回答這些人,因為沒有這個必要~ 我的事情,我只需向自己交代就夠了~ 就算真的要交代,也只有我父母有這個權利~ 其他的人,管你們屁事哦!?管好你們自個兒的事先吧~哼!!